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Abstract

Relationship is the core of scene graph, but its predic-
tion is far from satisfying because of its complex visual di-
versity. To alleviate this problem, we treat relationship as
an abstract object, exploring not only significative visual
pattern but contextual information for it, which are two key
aspects when considering object recognition. Our obser-
vation on current datasets reveals that there exists intimate
association among relationships. Therefore, inspired by the
successful application of context to object-oriented tasks,
we especially construct context for relationships where all
of them are gathered so that the recognition could bene-
fit from their association. Moreover, accurate recognition
needs discriminative visual pattern for object, and so does
relationship. In order to discover effective pattern for rela-
tionship, traditional relationship feature extraction methods
such as using union region or combination of subject-object
feature pairs are replaced with our proposed intersection
region which focuses on more essential parts. Therefore, we
present our so-called Relationship Context - InterSeCtion
Region (CISC) method. Experiments for scene graph gen-
eration on Visual Genome dataset and visual relationship
prediction on VRD dataset indicate that both the relation-
ship context and intersection region improve performances
and realize anticipated functions.

1. Introduction
Scene graph helps higher level scene understanding. Re-

cently, a number of works [41, 20, 48, 42, 19, 27, 7, 18,

49, 21, 23, 51, 43], have focused on discovering relation-

ships between objects or generating a graph representation

for a scene, which contains objects as nodes and their re-

lationships as edges. Besides, scene graph has evolved as

a promising alternative for high-level intelligence vision
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Figure 1. Examples of scene graph. All the scene graphs

are generated from our baseline method [41] given ground

truth objects. Dotted arrow means that the model misses

this relationship, while solid one is detected correctly.

tasks, such as image captioning [24, 40, 45], image gen-

eration [13], and visual question answering [2, 38, 39, 40].

However, scene graph generation still remains a challenging

problem due to complexity of predicting pair-wise relation-

ships even if object categories and locations are all given.

Although previous works have proposed a series of tech-

niques to improve relationship prediction, visual pattern and

contextual information, two key aspects in object recogni-

tion, are still not considered profoundly for relationship.

Let’s firstly pay attention to contextual information,

which is never exploited for relationship. Why should we

consider it? In Fig.1, the relationships between glass and

counter, cat and face, as well as cat and head are missed.

In fact, a number of same relationships (e.g. bottle on
counter, cat has ear) nearby have been detected correctly.

In other words, while predicting a specific relationship, cur-

rent methods only focus on the pair of regions with which

it relates, but ignore other relationships which may be help-

ful for reasoning itself. Once the corresponding object pairs

could not provide strong enough evidence for relationship

inference, the methods would fail.
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Figure 2. The fraction of images in which a relationship

appears no less than N times, denoted by RR@N . Green

bars are for N = 2 while blue bars are for N = 3.
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Figure 3. (a) The left image shows the high probability of

overlap of union regions. The union regions of man (yellow

box) and hat (blue box), man and glove (pink box) are the

same (red box). Images on right show a case of intersection

region (yellow mask) when two boxes are intersectant. (b)

A case of intersection region when two boxes are disjoint.

To further expose the underlying occurrence pattern of

relationship, we examine the fraction of images in which a

relationship appears no less than N times, denoted by “Rep-

etition Rate (RR@N )”, using Visual Genome dataset [15]

(VG) which contains more than 40k annotated unique rela-

tionships for over 100k images. As long tail distribution ex-

ists and most infrequent relationships hardly appear in nor-

mal scenes, we investigate 50 most common relationships.

As shown in Fig.2, repetition is a ubiquitous phenomenon

for relationships in manual annotations. What leads to this

fact? As we know, the number of object categories are much

more than that of relationship categories. Different object

pairs could be described with the same relationship as long

as they share similar visual patterns. On the other hand,

there exist lots of fixed phrase structures such as “object1-

has-object2” (e.g. “elephant-has-head”, and “elephant-has-

ear”), which is also indicated in [48]. As a result, many

relationships tend to repeat in images. These observations

are consistent with humans language habbits.

From the above observations, there exists strong associa-

tion among relationships, which encourages us to make use

of context to capture it. Context has been widely utilized for

object-oriented tasks in the form of comprehensible object

co-occurrence [4, 5, 48, 22] and the approaches of mod-

eling object context varies. Different from objects, direct

and explicit association between two relationships is not

easy to model, thus we hope to gather all the relationships

information to make themselves establish implicit connec-

tion. By this way, semantics and visual patterns of relation-

ships could be reasoned and improved respectively under

the guidance of mutual influences. Inspired by [4], we use

memory to construct such context for relationships, where

all relationships information is stored and reasoning process

happens. We will show that the relationship context indeed

functions and captures the frequent repetition law.

Apart from contextual information, visual pattern is an-

other key aspect for object, and so does relationship. To the

best of our knowledge, all of current works obtain relation-

ship features either from union region [41, 18], which is the

minimal closure of subject and object region, or combina-

tion of subject and object features [49]. Such combination-

like representations may not expose the real visual pattern

of relationship and mainly have two drawbacks. Firstly, a

large number of union regions overlap with each other [19].

The left image in Fig.3(a) gives an example. The relation-

ship features are too similar for the models to distinguish.

On the other hand, the subject and object areas contain too

much object information. As a result, the models may in-

fer the relationship mainly depending on the objects instead

of relationship pattern itself [43]. However, relationships

especially geometric predicates (e.g. on, in) are almost not

dependent on object categories. In this work, we hope to

separate visual pattern of relationship from object as much

as possible. We propose a simple but effective region, inter-

section region, for relationship feature extraction. As shown

in the right two images in Fig.3(a) (two boxes are intersec-

tant) and three images in Fig.3(b) (two boxes are disjoint),

the interactive parts of subjects and objects are more likely

to reveal the visual pattern of relationship because although

the objects vary, the visual patterns in these regions are sim-

ilar. Experiments on VG and VRD dataset [23] demonstrate

the effectiveness of our method.

2. Related Works
Scene Graph Generation. Scene graph is firstly men-

tioned in [14] for image retrieval. Recently, a number of

approaches [23, 7, 18, 49, 50, 21, 51, 27, 47, 31, 41, 20,

48, 42, 19, 43] are proposed to detect objects and predict

relationships concurrently. Most of them shed light on mes-

sage passing [41] between two related objects or the ob-

ject and its corresponding relationships. The effectiveness

of this message passing mechanism as well as its variants

[42, 19, 20, 18, 48] is proven. In our work, we especially

focus on message passing between relationships, creatively

exploiting implicit association among relationships which

is helpful for prediction.
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Context Modeling. Context modeling and reasoning

[16, 28, 30, 32, 8, 44, 34, 3, 12, 37] is one of the most

helpful approaches for scene or object recognition. A vari-

ety of previous works on scene understanding [36, 17], ob-

ject recognition [4, 5, 22, 11], attributes reasoning [9, 29],

human-object interaction [44], action recognition [25], have

benefited from context. However, context is seldom consid-

ered in scene graph generation or visual relationship detec-

tion tasks. Zellers et al. [48] makes an early attempt to use

object context for scene graph generation. While our pro-

posed relationship context, is totally different from object

context used in [48]. We take a further step to demonstrate

that relationship context is as nonnegligible as object con-

text and even plays a more significant role in relationship-

centric tasks compared with object context.

Relationship Feature Extraction. Almost all pub-

lished scene graph generation or visual realtionship detec-

tion methods have to construct initial feature for relation-

ship. The most general approaches include computing the

union region [41, 18, 7] and feeding it to a local feature

extraction module (e.g. RoI pooling layer [10]), or com-

bining the subject and object features [49]. These methods

are intuitive and work but either lack discrimination or rely

heavily on object information. Our proposed intersection

region concentrates on more essential part and is closer to

the real visual pattern of relationship.

3. Approach
Our goal is not only to especically construct relationship

context apart from object context to capture the hidden asso-

ciation among relationships, but also to discover more dis-

criminative visual pattern for them. To this end, our method,

Relationship Context - InterSeCtion Region (CISC), is de-

vised which will be described in following subsections.

3.1. Basic Scene Graph Model

Our framework is based on a basic scene graph model

which refines representations for objects and relationships

with explicit message passing mechanism. Therefore, we

start by describing a general skeleton for it.1

In a basic scene graph model, objects and relationships

are modelled separately for |C| object classes and |R| re-

lationship classes. They can be regarded as nodes v in

a virtual graph G = (V = V O
⋃

V R, E), as shown

in the inner dotted box in Fig.4(a), where vO ∈ V O de-

notes object, vR∈V R denotes relationship, and edge e =
(vOi , vOj )

⋃
(vOi , vRij)

⋃
(vOj , vRij) ∈ E means that if object i

and j are related, there are edges between vOi and vOj , vOi
and vRij , as well as vOj and vRij . Each node has its own feature

f and broadcasts its message to neighbors to instruct them

1We do not differentiate “subject” and “object” but use “ob-

ject” uniformly instead. We use “predicate” to refer to a certain relation.

to refine features. The brown dotted bidirectional arrows in

Fig.4(a) demonstrate the message passing process.

In practice, supposing fOi ∈ R
D and fOj ∈ R

D are fea-

tures2 of two object candidates (obtained from region pro-

posal methods, e.g. RPN [33]) associated with vOi and vOj ,

and fRij ∈ R
D represents the relationship feature associated

with vRij , the message passing procedure can be written as:

mO
i = GO

⎛
⎝ ∑

j∈NO
i

MO→O(fOj ),
∑

j∈NO
i

MR→O(fRij )

⎞
⎠, (1)

mR
ij = GR

(
MO→R(fOi ), MO→R(fOj )

)
, (2)

fOi ← UO(fOi , mO
i ), (3)

fRij ← UR(fRij , mR
ij), (4)

where mO
i ∈ R

D and mR
ij ∈ R

D denote messages received

by node vOi and vRij respectively. NO
i stands for neighbors

of vOi . MO→O, MR→O, and MO→R are message pro-

cessing functions that extract useful information from node

features. Their superscripts indicate the direction of mes-

sage passing (e.g. R → O denotes “from relationship to

object” ). GO and GR represent gathering functions which

integrate messages from sources. UO and UR are update

functions for object and relationship respectively. After

message passing process, the refined features could be used

to make predictions. In next subsection, we will build con-

text based on this universal skeleton.

3.2. Relationship Context Construction

With representations of objects and relationships ob-

tained from basic scene graph model, context is able to be

constructed. However, different from objects which have

co-occurrence association, it is difficult to model explicit

and interpretable association between any two relationships.

Therefore, the most feasible way is to construct relation-

ship context implicitly, which can be considered as a rem-

edy of missing of message passing between relationships in

basic scene graph model. On the other hand, we also hope

the relationship context to keep the 2-dimensional spatial

structure of an image so that a specific relationship can be

affected by surrounding similar relationships if there exist.

Memory [4, 5] meets our demand. In [4, 5], memory is used

for object context construction. Information of previously

detected objects is saved into the memory, which provides

context for further object reasoning. Supposing there are

N object instances O = [O1, O2, . . . , ON ] to be detected

given an image I. Then an iterative detection modelM is

expected to maximize the log-likelihood:

LO ≈ logP
(
O

(t)
1:N

∣∣S(t−1)
1:N ,M, I

)
, (5)

2The feature is a 1-dimensional vector with size D when referring to

message passing or prediction process, while it is a tensor with spatial size

in memory updating process, except that there is extra explanation.
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Figure 4. (a) Details of a basic scene graph model. Message passing described in Eq.(1-4) and prediction are executed

through the constructed virtual graph G shown in the inner dotted box. (b) Architecture of context reasoning network. (c)

The framework of our method. After obtaining initial visual features for objects and relationships, the initial iteration is

triggered and produces predicted information. In each round of later memory iterations, the predicted information together

with their initial visual features are used to update the memories. Then two memories take the responsibility, which will

conduct context reasoning process and provide updated features for further predictions.

where O
(t)
1:N stands for the prediction of all objects at

timestep t and memory S(t−1)
1:N encodes information of all

objects at last timestep, t − 1. S(0)1:N is an empty mem-

ory. In practice, S is a three-dimensional tensor with shape

h × w × c. h and w are the same as the spatial size of the

feature map of image I processed by a feature extraction

network. c is depth size so that the memory stores extra

useful information at each spatial location.

Naturally, we consider constructing relationship context

with memory. Let C denote relationship memory. K rela-

tionships R = [R1, R2, R3, . . . , RK ] need to be classified.

C(t)1:K encodes information of all relationships at timestep t

and C(0)1:K is empty. We extend the detection model M to

our whole framework. The relationship prediction part of

M is expected to maximize:

LR ≈ logP
(
R

(t)
1:K

∣∣C(t−1)
1:K ,M, I

)
. (6)

Next we describe the whole framework, which is de-

picted in Fig.4(c). The object representations fOi obtained

from the front-end object detector and features fRij of re-

lated pairs of objects acquired with relationship feature

extraction methods are instantly fed into the basic scene

graph model and make predictions as shown in Fig.4(a).

The predicted information includes the object class scores

pO ∈ R
N×|C| and locations lO ∈ R

N×4|C| (4 indicates

four coordinates of bounding boxes), and relationship class

scores pR ∈ R
K×|R|. This is the initial iteration.

The later memory iterations begin with memory updat-

ing. Firstly, we hope to remember as much known informa-

tion as possible in memories. Therefore, the inputs to mem-

ories fOinp , fRinp should contain fixed initial visual features

together with predicted information (denoted by four “in-

put” arrows in Fig.4(c)):

fOinp = ReLU(Fc(pO) + Fc(lO) + Conv1×1(fO)), (7)

fRinp = ReLU(Fc(pR) + Conv1×1(fR)), (8)
where the fully connected layers and convolutional layers

are used to unify dimensions. Secondly, let’s consider de-

tails of memory updating (denoted by four “update” arrows

in Fig.4(c)). Since the memories should not forget previ-

ously obtained information, we exploit the update mecha-

nism of GRU [6] which is a kind of RNN. Thus we regard

the memories as GRU cells. In a GRU cell, previously ac-

quired information is stored as internal state, which can also

influence the output. Similarly, the states of memories, de-

noted by fOsta and fRsta , are obtained by applying RoI pool-

ing operation to the memories. Finally the new features are

computed with GRU and memories are updated with inverse

RoI pooling opearation (similar to the operation mentioned

in [46], which puts the features back to their original spatial

positions):

f•new =z∗f•sta+(1−z)∗σ(WU f
•inp+WH(r∗f•sta)), (9)

S = InvRoIP(fOnew), C = InvRoIP(fRnew) (10)
where • stands for O or R, z and r are update and reset gate

in standard GRU, WU and WH are learnable convolutional

parameters, σ is sigmoid function and ∗ denotes element-

wise product. InvRoIP denotes inverse RoI Pooling.

Now the object memory and relationship memory take

the responsibility, where context reasoning process is con-
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(a) Case 1, intersectant(inclusive or overlap). (b) Case 2, disjoint.

(c) Case 3, disjoint. (d) Case 4, disjoint.

Figure 5. Four cases of intersection region. Red solid boxes

are object boxes while the blue dotted boxes are our de-

signed intersection region. Case 1 contains two situations.

ducted. As the memories contain both semantic and visual

information, convolution is used to help integrate them and

spread information of a certain object or relationship to sur-

roundings. Similar to [5], context reasoning is realized with

three 3 × 3 convolutions and residual structure, as shown

in Fig.4(b). Especially for relationships, this process makes

use of a large number of similar visual patterns and helps

the model learn better representations. After context rea-

soning, object and relationship features are obtained from

these two memories and used for further predictions.

3.3. Intersection Region

As introduced in Sec.1, current methods for extracting

relationship features are either lacking in discrimination or

seriously dependent on objects. We propose intersection re-

gion shown in Fig.5 which focuses on more essential part

and reduces distractive object information. We elaborately

devise it considering both the intersectant and disjoint cases.

Given bounding boxes[xi
1, y

i
1, x

i
2, y

i
2] and [xj

1, y
j
1, x

j
2, y

j
2]

for two objects i and j where x1, x2 are horizontal bound-

aries and y1, y2 are vertical boundaries, we firstly judge

their relative position. Let (cix, c
i
y) and (cjx, c

j
y) be center

points of two boxes, wi, hi, wj , hj be widths and heights.

We give two auxiliary conditions for judgement:

|cix − cjx| ≥
wi + wj

2
(11)

|ciy − cjy| ≥
hi + hj

2
(12)

There are four cases:

1. Intersectant. The intersection box is directly obtained:
Bisc = [max(xi

1, x
j
1),max(yi1, y

j
1),

min(xi
2, x

j
2),min(yi2, y

j
2)]

(13)

2. Disjoint, satisfies condition (11) and (12):
Bisc = [min(cix, c

j
x),min(ciy, c

j
y),

max(cix, c
j
x),max(ciy, c

j
y)]

(14)

3. Disjoint, satisfies condition (11) but violates (12):
Bisc = [min(cix, c

j
x),min(yi1, y

j
1),

max(cix, c
j
x),max(yi2, y

j
2)]

(15)

4. Disjoint, satisfies condition (12) but violates (11):
Bisc = [min(xi

1, x
j
1),min(ciy, c

j
y),

max(xi
2, x

j
2),max(ciy, c

j
y)]

(16)

In the experiment section, we will introduce how to use

and evaluate our intersection region in practice.

4. Experiments
In following subsections we firstly clarify experimental

settings including datasets, evaluation metrics, and imple-

mentation details. Then we show the experiment results.

4.1. Experiment Settings

Datasets. Visual Genome is the largest dataset annotated

with scene graphs. However, different splits are used in pre-

vious works. We follow the split in [41] which is the most

common used. The split contains 75,651 images for training

and 32,422 images for testing. The most frequent 50 rela-

tionship categories and 150 object categories are selected to

be the predicted targets. Besides, VRD [23] is a standard

dataset for visual relationship detection, containing 4,000

images for training and 1,000 images for testing. 100 object

categories and 70 relationship categories are considered.

Evaluation. We adopt three universal evaluation tasks

for scene graph generation: (1) predicate classification
(PREDCLS): given ground truth categories and locations of

any two objects, predict their relationship, (2) scene graph
classification (SGCLS): given ground truth locations of any

two objects, predict their categories and relationship, and

(3) scene graph generation (SGGEN): detect objects and

predict pair-wise relationships, and objects who have at

least 0.5 IoU overlap with their ground truth boxes are con-

sidered to be correctly detected. All evaluation modes use

recall@K metrics, where K maybe 20, 50 or 100.

4.2. Implementation Details

Choice of Basic Scene Graph Model. In Sec.3.1 we

give a general skeleton of basic scene graph model. In prac-

tice, a model can be selected as long as the message passing

mechanism described by Eq.(1-4) is applicable. We choose

the model proposed in [41] for its favorable performance,

great popularity and easy implementation.

Models and Training Details. In the experiments, we

compare the results between union region and intersection

region. Besides, in order to explore for a better perfor-

mance, we further try to combine these two types of fea-

tures. Faster-RCNN [33] with VGG-16 [35] backbone is

selected as our front-end object detector for fair compari-

son. After the detector is trained and its layers are frozen,

the whole framework is then trained on ground truth scene

graph annotations. Furthermore, we also try to assemble the

predictions from each iteration with attention mechanism

8184



[26]. Therefore, when making a prediction in each itera-

tion, an extra attention weight is predicted at the same time.

More details can be found in supplementary materials. The

source codes are implemented with Tensorflow3 [1].

4.3. Quantitative Results

We compare the following models and present main

quantitative results in Table 1. Mem: Our context-utilized

model. It uses union region to extract relationship fea-

tures. Mem+Isc:Our context-utilized model which replaces

union region with our intersection region. Mem+Mix: Our

proposed full model which combines two types of rela-

tionship features. Mem+Mix+Attention: Based on model

Mem+Mix, we further assemble predictions from each iter-

ation with predicted attention weights in order to obtain a

best result. IMP [41]: Our baseline which uses union re-

gion to extract relationship features. We reimplement this

model and re-train it using our object detector. In Table 1,

the results of this model reported in [41] and [42] are pre-

sented together with ours. IMP+Isc and IMP+Mix: Re-

place the union region used in IMP with intersection region

or combination version respectively. Graph-RCNN [42]:

It is also a scene graph generation model based on message

passing. VRD [23]: We present its scene graph generation

results reported in [41]. Pixel2Graph [27]: We report its

results according to [48]. MSDN [20]: The VG split it uses

is different from ours. We train and evaluate it on our data

split and report the original and our reimplemented results.

From Table 1, results of our reimplemented IMP model

are close to or better than those of original version and

reimplemented version by [42] under most metrics, which

means that our reimplementation is correct and the improve-

ments mentioned below are from our proposed method.

Firstly, through the comparisons between Mem and IMP**,

Mem+Isc and IMP**+Isc, Mem+Mix and IMP**+Mix,

it preliminarily indicates that the usage of context is ef-

fective in helping the model recognize objects and rela-

tionships. We will further compare the importance be-

tween relationship context and object context and evalu-

ate the function of relationship context in following sub-

sections. On the other hand, IMP**+Isc performs better

than IMP**, and Mem+Isc outperforms Mem under most

metrics. It shows effectiveness of our intersection region.

Finally, the assembled models, IMP**+Mix, Mem+Mix,

and Mem+Mix+Attention, further boost the performance.

It is noteworthy that since our basic scene graph model

is IMP which limits the upper bound of performance, our

models cannot surpass some methods like Graph-RCNN or

Pixel2Graph under some metrics. However, results of our

assembled model, Mem+Mix+Attention, are close to them

and even better under some metrics.

3Our source codes are available at http://vipl.ict.ac.cn/
resources/codes.
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Figure 6. (a) Results of using various iterations for model

Mem. (b) Performances of utilizing different methods to

extract relationship features. Results of three tasks are

shown under R@100 metric.

Figure 7. The per-type recall@5 of classifying individual

predicate tested on VG dataset. The predicates are listed in

descending order from left to right according to their repe-

tition rates(RR@2).

4.4. Evaluation of Memory

Ablation Study. To compare the importance of object

memory and relationship memory, we consider ablation ex-

periments in Table 1. Mem\relmem and Mem\objmem

stands for dropping the relationship memory module and

object memory module from Mem respectively. The results

suggest that the removal of relationship memory does more

harm to performance than removal of object memory. It

implies that the association among relationships is nonneg-

ligible and even more important than that among objects for

scene graph generation tasks.

Multiple Iterations Analysis. We investigate the perfor-

mances of using various iterations for model Mem as shown

in Fig.6(a). We find that 3 iterations are the best. Since

the memories are empty at the first iteration, it actually only

takes 2 iterations for memories to capture the context. More

iterations may enhance noise.

Predicate Prediction. In order to explore what context

the relationship memory module actually captures, we eval-

uate per-type recall@5 of classifying individual predicate,

following [41]. In Fig.7, the per-type recall rates for IMP**

and Mem tested on VG dataset are listed in descending or-

der from left to right according to the predicate repetition

rate (RR@2). We can find that the relationship memory

improves most results of predicates which have higher rep-

etition rate (near the left side in Fig.7) despite a few outliers.

For these predicates, it is easier for the memory module to

extract similar patterns and learn stronger representations.

While for some predicates with low repetition rate, the con-

tribution of relationship memory is limited. And on some

outliers, e.g. “mounted on”, “parked on ”, it fails mainly be-
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Scene Graph Generation Scene Graph Classification Predicate Classification

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

m
o
d
el

s

VRD [23] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0
IMP [41] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0
IMP* [42] - 6.4 8.0 - 20.6 22.4 - 40.8 45.2
Pixel2Graph [27, 48] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4
MSDN [20] - 10.7 14.2 - 24.3 26.5 - 67.0 71.0
MSDN* [20] - 11.1 14.0 - - - - - -
Graph-RCNN [42] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1

IMP**(baseline) 4.2 6.8 8.3 15.7 21.4 24.7 29.9 40.4 48.9
IMP**+Isc 4.7 7.3 8.7 16.6 21.9 24.8 31.0 43.0 50.8
IMP**+Mix 5.3 8.0 10.5 17.3 22.6 25.5 31.7 44.2 51.7
Mem 4.8 7.6 10.2 19.5 25.0 28.0 32.3 44.9 52.9
Mem+Isc 5.0 7.9 10.5 19.4 25.0 28.0 31.9 45.2 52.4
Mem+Mix 6.0 9.4 11.9 19.7 25.0 27.7 33.3 45.9 53.0
Mem+Mix+Attention 7.7 11.4 13.9 23.3 27.8 29.5 42.1 53.2 57.9

A
b

la
ti

o
n

s Mem\relmem 4.5 7.3 9.7 19.0 24.5 27.7 31.9 44.0 51.9
Mem\objmem 4.8 7.4 10.0 19.3 25.0 27.9 32.0 44.6 52.5
Mem 4.8 7.6 10.2 19.5 25.0 28.0 32.3 44.9 52.9

Table 1. Results table on Visual Genome test set. All numbers are in %. IMP*: results reimplemented by [42]. IMP**:

results reimplemented by us. MSDN*: The results reimplemented by us on our VG data split. Evaluation details about

PREDCLS and SGCLS in MSDN are not released.

Predicate Classification

model R@50 R@100

DrNet [7] 80.78 81.90

DrNet* 78.12 79.01

DrNet*+Isc 78.37 79.43

DrNet*+Mix 78.78 79.62

Table 2. Results on VRD test set. DrNet* denotes our re-

implementation using union region. DrNet*+Isc and Dr-

Net*+Mix use intersection region or mixture version.

cause these predicates are overshadowed seriously by other

semantically similar predicates, which may be ascribed to

annotation bias. Despite this, It is undeniable that the rela-

tionship memory captures the repetition law sucessfully and

helps the model learn better representations on most predi-

cates with high repetition rate and unambiguous semantics.

4.5. Evaluation of Intersection Region

Results in Table 1 have shown effectiveness of intersec-

tion region. To further validate the universality, we conduct

another experiment for visual relatonship detection on VRD

dataset using model in [7]. We reimplement part of this

model, feeding it with ground truth objects and only predict-

ing the relations. The original model contains several mod-

ules which are trained separately. We train it end-to-end.

Results are shown in Table 2. Although the improvement is

not so obvious because of lots of ambiguous predicates, it

still proves the universality of intersection region.

(a) IMP** and IMP**+Isc tested on VG.

(b) DrNet* and DrNet*+Isc tested on VRD.

Figure 8. The per-type recall@5 of classifying individual

predicate. The predicates are listed from left to right accord-

ing to their degree of dependence to certain subject-object

pairs (left side means less dependence).

Predicate Prediction. We explore the effect of inter-

section region on each predicate. We firstly compute the

number of subject-object pairs that each predicate asso-

ciates with. The predicate with larger number means that

it can be used to describe relationships for more types of

subject-object pairs, and thus has less dependence on a cer-

tain type of pair. The per-type recall@5 rates for compar-

isons between (IMP**, IMP**+Isc), and between (DrNet*,

DrNet*+Isc) are shown in Fig.8. The predicates are listed in

a descending order from left to right according to the num-

8186



counter

bottle glass

wearing

cat

head face ear paw tail

has

has has

has

has

woman1

hair1 boot

coat sidewalkwoman2

jean jackethair2

has has

onon

on

wearing
wearing

has

man

jacket

woman

shirt

wearing wearing

Figure 9. Examples of scene graph under the setting of

PREDCLS metric. All arrows (including dotted and solid

types) are ground truth relationships and detected correctly

by Mem. Dotted arrows stand for missed ones of IMP**.
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Figure 10. Scene graph generation examples under the set-

ting of SGGEN metric for comparing IMP** with Mem. In

each row, the left image and scene graph are generated by

IMP** while the right ones are generated by Mem. In im-

ages and scene graphs, red boxes are predicted and overlap

with the ground truth, yellow boxes are ground truth with

no match. In scene graphs, red edges are true positives, or-

ange edges are false negatives, purple boxes and edges are

false positives. Some yellow boxes in scene graphs which

do not exist in images mean that they are detected correctly

but the model fails in detecting their relationships with any

other objects.

ber mentioned above. No matter in the VG or VRD dataset,

the predicates with less dependence are almost all geomet-

ric types. The intersection region especially contributes to

prediction of these predicates because features from inter-

section region are closer to the real visual patterns of predi-

cates and are less likely to be distracted by object informa-

tion, and at the same time geometric predicates rely less on

object categories compared with semantic predicates.

Feature-level Ablation Study. Since the traditional

union region indeed covers our intersection region, it’s nat-

ural to ask a question: is it the intersection region that

plays a significant role in relationship prediction? We con-

duct the feature-level ablation study. Apart from the model

IMP**, IMP**+Isc, and IMP**+Mix mentioned above, we

further evaluate another two models. One is to drop fea-

tures in intersection region from union region by setting the

features in intersection region to 0 (IMP**+DROP) and

the other one is to combine features in intersection region

with DROP (IMP**+Isc+DROP). The results are shown

in Fig.6(b). IMP**+DROP declines from IMP** while

IMP**+Isc+DROP performs similarly to IMP**+Mix. It

further justifies the key importance of intersection region.

4.6. Qualitative Results

Qualitative examples for comparing the IMP** and Mem

under the setting of PREDCLS task are shown in Fig.9. The

results show higher predicate recall rates of our method.

What’s more, it is obvious that although the object cate-

gories with which a relationship associates are different, the

visual patterns of the relationship are similar. The relation-

ship context gathers these similar patterns to improve rela-

tionship representations and enhance recognition capability.

In Fig.10 we show some generated scene graphs using Mem

and IMP** on VG test images for contrastive analysis. It

shows that our method obtains higher recall with the help

of context. More qualitative results can be found in sup-

plementary materials, where we also provide examples for

comparing IMP** and IMP**+Isc to show the superiority

of intersection region.

5. Conclusion
In this work, we regard relationships as abstract objects

in scene graph generation task, considering their visual pat-

terns and contextual information. We discover that rep-

etition is a ubiquitous phenomenon among relationships,

hence we construct context for relationships apart from ob-

jects. Experiments show that the relationship context indeed

captures the repetition law and even more helpful for gen-

erating scene graphs compared with object context. What’s

more, intersection region is proposed to help recognize rela-

tionships relying more on their own visual patterns instead

of object information. From our evaluations, our methods

are universal and have potential to be used with other bet-

ter basic scene graph models. Despite our efforts on solv-

ing this task, there still exist some problems which are wor-

thy of discussions. Firstly, the performance of scene graph

models are sensitive to the quality of the front-end detector.

When the detector misses some objects, the relationships

will be missed, too. Another problem is the serious imbal-

ance in VG dataset, which makes it hard to improve the un-

derstanding of semantic relationships. It may be alleviated

by utilizing external language priors.
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